Prof. Dr. habil. Frank-Michael Schleif
Persönliche Daten
Abteilung / Funktion / Ausstattung an der FHWS
Einordnung in DFG Systematik der Fächer
- Betriebs-, Kommunikations- und Informationssysteme
- Künstliche Intelligenz, Bild- und Sprachverarbeitung
- Softwaretechnologie
Forschungsaktivität
The Netherlands Genomics Initiative, 2010
- Mensch-Umwelt-Kommunikation
- Digitalisierung
Persönliche Vernetzung und Auszeichnungen
Publikationen
eine leidlich vollständige Liste findet sich hier
http://dblp.uni-trier.de/pers/hd/s/Schleif:Frank=Michael
Mohammad Mohammadi, Reynier Peletier, Frank-Michael Schleif, Nicolai Petkov, Kerstin Bunte: Globular Cluster Detection in the Gaia Survey. ESANN 2018
Christoph Raab, Frank-Michael Schleif: Sparse Transfer Classification for Text Documents. KI 2018: 169-181
Frank-Michael Schleif, Christoph Raab, Peter Tiño: Sparsification of Indefinite Learning Models. S+SSPR 2018: 173-183
Frank-Michael Schleif: Indefinite Support Vector Regression. ICANN (2) 2017: 313-321
Frank-Michael Schleif: Small sets of random Fourier features by kernelized Matrix LVQ. WSOM 2017: 192-196
Frank-Michael Schleif, Ata Kabán, Peter Tiño: Finding Small Sets of Random Fourier Features for Shift-Invariant Kernel Approximation. ANNPR 2016: 42-54
Frank-Michael Schleif, Peter Tiño, Yingyu Liang: Learning in indefinite proximity spaces - recent trends. ESANN 2016
Kerstin Bunte, Marika Kaden, Frank-Michael Schleif: Low-Rank Kernel Space Representations in Prototype Learning. WSOM 2016: 341-353
Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño: Probabilistic classifiers with low rank indefinite kernels. CoRR abs/1604.02264 (2016)
Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño: Probabilistic Classification Vector Machine at large scale. ESANN 2015
Michael Biehl, Barbara Hammer, Frank-Michael Schleif, Petra Schneider, Thomas Villmann: Stationarity of Matrix Relevance LVQ. IJCNN 2015: 1-8
Frank-Michael Schleif, H. Chen, Peter Tiño: Incremental probabilistic classification vector machine with linear costs. IJCNN 2015: 1-8
Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño: Large Scale Indefinite Kernel Fisher Discriminant. SIMBAD 2015: 160-170
Frank-Michael Schleif: Proximity learning for non-standard big data. ESANN 2014
Frank-Michael Schleif, Peter Tiño, Thomas Villmann: Recent trends in learning of structured and non-standard data. ESANN 2014
Frank-Michael Schleif: Discriminative Fast Soft Competitive Learning. ICANN 2014: 81-88
Frank-Michael Schleif, Thomas Villmann, Xibin Zhu: High Dimensional Matrix Relevance Learning. ICDM Workshops 2014: 661-667
Tina Geweniger, Frank-Michael Schleif, Thomas Villmann: Probabilistic Prototype Classification Using t-norms. WSOM 2014: 99-108
Thomas Villmann, Frank-Michael Schleif, Marika Kaden, Mandy Lange: Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 10th International Workshop, WSOM 2014,
Mittweida, Germany, July, 2-4, 2014. Advances in Intelligent Systems and Computing 295, Springer 2014, ISBN 978-3-319-07694-2 [contents]
Andrej Gisbrecht, Frank-Michael Schleif: Metric and non-metric proximity transformations at linear costs. CoRR abs/1411.1646 (2014)
Xibin Zhu, Frank-Michael Schleif, Barbara Hammer: Semi-Supervised Vector Quantization for proximity data. ESANN 2013
Frank-Michael Schleif, Xibin Zhu, Barbara Hammer: Sparse Prototype Representation by Core Sets. IDEAL 2013: 302-309
Xibin Zhu, Frank-Michael Schleif, Barbara Hammer: Secure Semi-supervised Vector Quantization for Dissimilarity Data. IWANN (1) 2013: 347-356
Frank-Michael Schleif, Andrej Gisbrecht: Data Analysis of (Non-)Metric Proximities at Linear Costs. SIMBAD 2013: 59-74
Frank-Michael Schleif, Xibin Zhu, Barbara Hammer: Soft Competitive Learning for Large Data Sets. ADBIS Workshops 2012: 141-151
Kerstin Bunte, Frank-Michael Schleif, Michael Biehl: Adaptive learning for complex-valued data. ESANN 2012
Barbara Hammer, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu: White Box Classification of Dissimilarity Data. HAIS (1) 2012: 309-321
Frank-Michael Schleif, Bassam Mokbel, Andrej Gisbrecht, Leslie Theunissen, Volker Dürr, Barbara Hammer:Learning Relevant Time Points for Time-Series Data in the Life Sciences. ICANN (2) 2012: 531-539
Frank-Michael Schleif, Xibin Zhu, Andrej Gisbrecht, Barbara Hammer: Fast approximated relational and kernel clustering. ICPR 2012: 1229-1232
Frank-Michael Schleif, Xibin Zhu, Barbara Hammer: A Conformal Classifier for Dissimilarity Data. AIAI (2) 2012: 234-243
Michael Biehl, Kerstin Bunte, Frank-Michael Schleif, Petra Schneider, Thomas Villmann: Large margin linear discriminative visualization by Matrix Relevance Learning. IJCNN 2012: 1-8
Frank-Michael Schleif, Andrej Gisbrecht, Barbara Hammer: Relevance learning for short high-dimensional time series in the life sciences. IJCNN 2012: 1-8
Xibin Zhu, Frank-Michael Schleif, Barbara Hammer: Patch Processing for Relational Learning Vector Quantization. ISNN (1) 2012: 55-63
Andrej Gisbrecht, Barbara Hammer, Frank-Michael Schleif, Xibin Zhu: Accelerating kernel clustering for biomedical data analysis. CIBCB 2011: 154-161
Kerstin Bunte, Frank-Michael Schleif, Sven Haase, Thomas Villmann: Mathematical Foundations of the Self Organized Neighbor Embedding (SONE) for Dimension Reduction and Visualization. ESANN 2011
Petra Schneider, Tina Geweniger, Frank-Michael Schleif, Michael Biehl, Thomas Villmann: Multivariate class labeling in Robust Soft LVQ. ESANN 2011
Udo Seiffert, Frank-Michael Schleif, Dietlind Zühlke: Recent trends in computational intelligence in life sciences. ESANN 2011
Frank-Michael Schleif, Andrej Gisbrecht, Barbara Hammer: Accelerating Kernel Neural Gas. ICANN (1) 2011: 150-158
Barbara Hammer, Frank-Michael Schleif, Xibin Zhu: Relational Extensions of Learning Vector Quantization. ICONIP (2) 2011: 481-489
Barbara Hammer, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu: Prototype-Based Classification of Dissimilarity Data. IDA 2011: 185-197
Andrej Gisbrecht, Frank-Michael Schleif, Xibin Zhu, Barbara Hammer: Linear Time Heuristics for Topographic Mapping of Dissimilarity Data. IDEAL 2011: 25-33
Frank-Michael Schleif: Sparse kernelized vector quantization with local dependencies. IJCNN 2011: 1538-1545
Barbara Hammer, Andrej Gisbrecht, Alexander Hasenfuss, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu: Topographic Mapping of Dissimilarity Data. WSOM 2011: 1-15
Frank-Michael Schleif, Andrej Gisbrecht, Barbara Hammer: Supervised learning of short and high-dimensional temporal sequences for life science measurements. CoRR abs/1110.2416 (2011)
Thomas Villmann, Sven Haase, Frank-Michael Schleif, Barbara Hammer, Michael Biehl: The Mathematics of Divergence Based Online Learning in Vector Quantization. ANNPR 2010: 108-119
Ernest Mwebaze, Petra Schneider, Frank-Michael Schleif, Sven Haase, Thomas Villmann, Michael Biehl:Divergence based Learning Vector Quantization. ESANN 2010
Thomas Villmann, Frank-Michael Schleif, Barbara Hammer: Sparse representation of data. ESANN 2010
Dietlind Zühlke, Frank-Michael Schleif, Tina Geweniger, Sven Haase, Thomas Villmann: Learning vector quantization for heterogeneous structured data. ESANN 2010
Thomas Villmann, Sven Haase, Frank-Michael Schleif, Barbara Hammer: Divergence Based Online Learning in Vector Quantization. ICAISC (1) 2010: 479-486
Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Petra Schneider, Michael Biehl: Generalized Derivative Based Kernelized Learning Vector Quantization. IDEAL 2010: 21-28
Marc Strickert, Frank-Michael Schleif, Thomas Villmann, Udo Seiffert: Unleashing Pearson Correlation for Faithful Analysis of Biomedical Data. Similarity-Based Clustering 2009: 70-91
Frank-Michael Schleif, Thomas Villmann: Neural Maps and Learning Vector Quantization - Theory and Applications. ESANN 2009
Stephan Simmuteit, Frank-Michael Schleif, Thomas Villmann, Thomas Elssner: Tanimoto Metric in Tree-SOM for Improved Representation of Mass Spectrometry Data with an Underlying Taxonomic Structure. ICMLA 2009: 563-567
Marc Strickert, Jens Keilwagen, Frank-Michael Schleif, Thomas Villmann, Michael Biehl:Matrix Metric Adaptation Linear Discriminant Analysis of Biomedical Data. IWANN (1) 2009: 933-940
Thomas Villmann, Frank-Michael Schleif: Funtional vector quantization by neural maps. WHISPERS 2009: 1-4
Stephan Simmuteit, Frank-Michael Schleif, Thomas Villmann, Markus Kostrzewa: Hierarchical PCA Using Tree-SOM for the Identification of Bacteria. WSOM 2009: 272-280
Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Prototype Based Classification in Bioinformatics. Encyclopedia of Artificial Intelligence 2009: 1337-1342
Frank-Michael Schleif, Matthias Ongyerth, Thomas Villmann: Sparse Coding Neural Gas for Analysis of Nuclear Magnetic Resonance Spectroscopy. CBMS 2008: 620-625
Marc Strickert, Frank-Michael Schleif, Thomas Villmann: Metric adaptation for supervised attribute rating. ESANN 2008: 31-36
Petra Schneider, Frank-Michael Schleif, Thomas Villmann, Michael Biehl: Generalized matrix learning vector quantizer for the analysis of spectral data. ESANN 2008: 451-456
Tina Geweniger, Frank-Michael Schleif, Alexander Hasenfuss, Barbara Hammer, Thomas Villmann: Comparison of Cluster Algorithms for the Analysis of Text Data Using Kolmogorov Complexity. ICONIP (2) 2008: 61-69
Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Martijn van der Werff, André M. Deelder, Rob A. E. M. Tollenaar: Analysis of Spectral Data in Clinical Proteomics by Use of Learning Vector Quantizers. Computational Intelligence in Biomedicine and Bioinformatics 2008: 141-167
Marc Gerhard, Soren-Oliver Deininger, Frank-Michael Schleif: Statistical Classification and Visualization of MALDI-Imaging Data. CBMS 2007: 403-405
Thomas Villmann, Marc Strickert, Cornelia Brüß, Frank-Michael Schleif, Udo Seiffert: Visualization of Fuzzy Information in Fuzzy-Classification for Image Segmentation using MDS. ESANN 2007: 103-108
Thomas Villmann, Frank-Michael Schleif, Martijn van der Werff, André M. Deelder, Rob A. E. M. Tollenaar: Association Learning in SOMs for Fuzzy-Classification. ICMLA 2007: 581-586
Barbara Hammer, Alexander Hasenfuss, Frank-Michael Schleif, Thomas Villmann, Marc Strickert, Udo Seiffert: Intuitive Clustering of Biological Data. IJCNN 2007: 1877-1882
Alexander Hasenfuss, Barbara Hammer, Frank-Michael Schleif, Thomas Villmann: Neural Gas Clustering for Dissimilarity Data with Continuous Prototypes. IWANN 2007: 539-546
Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Supervised Neural Gas for Classification of Functional Data and Its Application to the Analysis of Clinical Proteom Spectra. IWANN 2007: 1036-1044
Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Analysis of Proteomic Spectral Data by Multi Resolution Analysis and Self-Organizing Maps. WILF 2007: 563-570
Frank-Michael Schleif: Advances in pre-processing and model generation for mass spectrometric data analysis. Similarity-based Clustering and its Application to Medicine and Biology 2007
Barbara Hammer, Alexander Hasenfuss, Frank-Michael Schleif, Thomas Villmann: Supervised Batch Neural Gas. ANNPR 2006: 33-45
Thomas Villmann, Udo Seiffert, Frank-Michael Schleif, Cornelia Brüß, Tina Geweniger, Barbara Hammer: Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes. ANNPR 2006: 46-56
Frank-Michael Schleif, Thomas Elssner, Markus Kostrzewa, Thomas Villmann, Barbara Hammer: Analysis and Visualization of Proteomic Data by Fuzzy Labeled Self-Organizing Maps. CBMS 2006: 919-924
Frank-Michael Schleif, Barbara Hammer, Thomas Villmann: Margin based Active Learning for LVQ Networks. ESANN 2006: 539-544
Cornelia Brüß, Felix Bollenbeck, Frank-Michael Schleif, Winfriede Weschke, Thomas Villmann, Udo Seiffert: Fuzzy image segmentation with Fuzzy Labelled Neural Gas. ESANN 2006: 563-568
Frank-Michael Schleif: Prototype based machine learning for clinical proteomics. Ausgezeichnete Informatikdissertationen 2006: 179-188
Barbara Hammer, Thomas Villmann, Frank-Michael Schleif, Cornelia Albani, Wieland Hermann: Learning Vector Quantization Classification with Local Relevance Determination for Medical Data. ICAISC 2006: 603-612
Thomas Villmann, Barbara Hammer, Frank-Michael Schleif, Tina Geweniger, Tom Fischer, Marie Cottrell: Prototype Based Classification Using Information Theoretic Learning. ICONIP (2) 2006: 40-49
Thomas Villmann, Frank-Michael Schleif, Barbara Hammer: Fuzzy Labeled Soft Nearest Neighbor Classification with Relevance Learning. ICMLA 2005
Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Local Metric Adaptation for Soft Nearest Prototype Classification to Classify Proteomic Data. WILF 2005: 290-296
Frank-Michael Schleif, U. Clauss, Thomas Villmann, Barbara Hammer: Supervised relevance neural gas and unified maximum separability analysis for classification of mass spectrometric data. ICMLA 2004: 374-379
Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño: Large Scale Indefinite Kernel Fisher Discriminant. SIMBAD 2015: 160-170
Frank-Michael Schleif, Barbara Hammer, Javier Gonzalez Monroy, Javier González Jiménez, José-Luis Blanco-Claraco, Michael Biehl, Nicolai Petkov: Odor recognition in robotics applications by discriminative time-series modeling. Pattern Anal. Appl. 19(1): 207-220 (2016)
Frank-Michael Schleif, Xibin Zhu, Barbara Hammer: Sparse conformal prediction for dissimilarity data. Ann. Math. Artif. Intell. 74(1-2): 95-116 (2015)
Frank-Michael Schleif: Generic probabilistic prototype based classification of vectorial and proximity data. Neurocomputing 154: 208-216 (2015)
Andrej Gisbrecht, Frank-Michael Schleif: Metric and non-metric proximity transformations at linear costs. Neurocomputing 167: 643-657 (2015)
Michael Biehl, Alessandro Ghio, Frank-Michael Schleif: Developments in computational intelligence and machine learning. Neurocomputing 169: 185-186 (2015)
Bassam Mokbel, Benjamin Paaßen, Frank-Michael Schleif, Barbara Hammer: Metric learning for sequences in relational LVQ. Neurocomputing 169: 306-322 (2015)
Frank-Michael Schleif, Peter Tiño: Indefinite Proximity Learning: A Review. Neural Computation 27(10): 2039-2096 (2015)
Barbara Hammer, Daniela Hofmann, Frank-Michael Schleif, Xibin Zhu: Learning vector quantization for (dis-)similarities. Neurocomputing 131: 43-51 (2014)
Mark J. Embrechts, Fabrice Rossi, Frank-Michael Schleif, John Aldo Lee: Advances in artificial neural networks, machine learning, and computational intelligence (ESANN 2013). Neurocomputing 141: 1-2 (2014)
Daniela Hofmann, Frank-Michael Schleif, Benjamin Paaßen, Barbara Hammer: Learning interpretable kernelized prototype-based models. Neurocomputing 141: 84-96 (2014)
Marc Strickert, Kerstin Bunte, Frank-Michael Schleif, Eyke Hüllermeier: Correlation-based embedding of pairwise score data. Neurocomputing 141: 97-109 (2014)
Xibin Zhu, Frank-Michael Schleif, Barbara Hammer: Adaptive conformal semi-supervised vector quantization for dissimilarity data. Pattern Recognition Letters 49: 138-145 (2014)
Alessio Micheli, Frank-Michael Schleif, Peter Tiño: Novel approaches in machine learning and computational intelligence. Neurocomputing 112: 1-3 (2013)
Andrej Gisbrecht, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu, Barbara Hammer:
Linear Time Relational Prototype Based Learning. Int. J. Neural Syst. 22(5) (2012)
Xibin Zhu, Andrej Gisbrecht, Frank-Michael Schleif, Barbara Hammer: Approximation techniques for clustering dissimilarity data. Neurocomputing 90: 72-84 (2012)
Kerstin Bunte, Petra Schneider, Barbara Hammer, Frank-Michael Schleif, Thomas Villmann, Michael Biehl: Limited Rank Matrix Learning, discriminative dimension reduction and visualization. Neural Networks 26: 159-173 (2012)
Frank-Michael Schleif, T. Riemer, U. Börner, L. Schnapka-Hille, M. Cross: Genetic algorithm for shift-uncertainty correction in 1-D NMR-based metabolite identifications and quantifications. Bioinformatics 27(4): 524-533 (2011)
Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Petra Schneider: Efficient Kernelized Prototype Based Classification. Int. J. Neural Syst. 21(6): 443-457 (2011)
John Aldo Lee, Frank-Michael Schleif, Thomas Martinetz: Advances in artificial neural networks, machine learning, and computational intelligence. Neurocomputing 74(9): 1299-1300 (2011)
Ernest Mwebaze, Petra Schneider, Frank-Michael Schleif, Jennifer R. Aduwo, John A. Quinn, Sven Haase, Thomas Villmann, Michael Biehl: Divergence-based classification in learning vector quantization. Neurocomputing 74(9): 1429-1435 (2011)
Cecilio Angulo, John Aldo Lee, Frank-Michael Schleif: Advances in computational intelligence and learning (ESANN 2009). Neurocomputing 73(7-9): 1049-1050 (2010)
Stephan Simmuteit, Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Evolving trees for the retrieval of mass spectrometry-based bacteria fingerprints. Knowl. Inf. Syst. 25(2): 327-343 (2010)
Frank-Michael Schleif, Thomas Villmann, Markus Kostrzewa, Barbara Hammer, Alexander Gammerman: Cancer informatics by prototype networks in mass spectrometry. Artificial Intelligence in Medicine 45(2-3): 215-228 (2009)
Frank-Michael Schleif, Michael Biehl, Alfredo Vellido: Advances in machine learning and computational intelligence. Neurocomputing 72(7-9): 1377-1378 (2009)
Frank-Michael Schleif, Thomas Villmann, Matthias Ongyerth: Supervised data analysis and reliability estimation with exemplary application for spectral data. Neurocomputing 72(16-18): 3590-3601 (2009)
Marc Strickert, Frank-Michael Schleif, Udo Seiffert, Thomas Villmann: Derivatives of Pearson Correlation for Gradient-based Analysis of Biomedical Data. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 12(37): 37-44 (2008)
Thomas Villmann, Frank-Michael Schleif, Markus Kostrzewa, Axel Walch, Barbara Hammer: Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings in Bioinformatics 9(2): 129-143 (2008)
Frank-Michael Schleif, Thomas Villmann, Barbara Hammer: Prototype based fuzzy classification in clinical proteomics. Int. J. Approx. Reasoning 47(1): 4-16 (2008)
Thomas Villmann, Barbara Hammer, Frank-Michael Schleif, Wieland Hermann, Marie Cottrell: Fuzzy classification using information theoretic learning vector quantization. Neurocomputing 71(16-18): 3070-3076 (2008)
Frank-Michael Schleif, Barbara Hammer, Thomas Villmann: Margin-based active learning for LVQ networks. Neurocomputing 70(7-9): 1215-1224 (2007)
Frank-Michael Schleif: Maschinelles Lernen mit Prototypmethoden in der klinischen Proteomik. KI 21(4): 65-67 (2007)
Thomas Villmann, Frank-Michael Schleif, Barbara Hammer: Prototype-based fuzzy classification with local relevance for proteomics. Neurocomputing 69(16-18): 2425-2428 (2006)
Thomas Villmann, Frank-Michael Schleif, Barbara Hammer: Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks 19(5): 610-622 (2006)
Thomas Villmann, Barbara Hammer, Frank-Michael Schleif, Tina Geweniger, Wieland Hermann: Fuzzy classification by fuzzy labeled neural gas. Neural Networks 19(6-7): 772-779 (2006)